
37

Nonlinear Network Programming on Vector Supercomputers

Stavros A. Zenios
John M. Mulvey

Report EES-85-13

Engineering-Management Systems
Civil Engineering Department

Princeton University
Princeton, NJ 08544

ABSTRACT

The parallelism built in vector supercomputers raises several challenging
issues for designers of optimization algorithms. We survey recent trends
in parallel computer systems, studying the impact of vector computing
on nonlinear network programming. A general framework for vectoriz-
ing optimization software is proposed, and applied in the context of two

'nonlinear network codes: (1) a primal truncated Newton (NLPNETG)
method and (2) a simplicial decomposition (GNSD) method. Computa-
tional, experiments on a Cray X-MP/24 system -- testing the nonlinear
network codes and comparing the results with a general purpose optim-
izer MINOS -- are included.
Keywords: Vector computers; Network optimization; Nonlinear pro-

gramming; Vectorization; CRAY X-MP; CRAY Fortran

February 15,1986

This research was funded in part by NSF grant DCR-8401098 and NASA grant NAG-1-520.

(N A S A - C i t - 1 8 1040) N C E L I t i E A K B E T P C i i K 887-7C459
€ E C G B A t B I b G C b V E C l t i f i S U P E f i C C E E L 1 6 E S
(Erincetco Univ,) 37 F A v a i l : ITIS

U n c l a s
00/61 00794C2

Nonlinear Network Programming on Vector Supercomputers

Stavros A. Zenios
John M. Mulvey

Report EES-85-13

Engineering-Management Systems
Civil Engineering Department

Princeton University
Princeton, NJ 08544

1. Introduction

The first computers were designed to satisfy the computational needs of scientists and

engineers. Once the community began operating these computers, they realized that problems

existed whose size exceeded the capabilities of these machines -- maybe an indication that human

vision outperforms human engineering. As a direct result of the existing need for bigger and fas-

ter machines the first supercomputers were built -- those being nothing more than the most

powerful computer at any point in time.

Improvement in hardware performance of computers and supercomputers has been

dramatic4. First came the change from bulky and sensitive vacuum tubes to the small and reli-

able semiconductor transistor. This was followed by a twenty year period of packing hundreds,

to hundreds of thousands of transistors on a silicon chip. These developments were the major fac-

tor behind improved computational performance, and the basic computer logic design did not

change much - if it changed at all - from the original von Neumann prototype.

The improved performance of the silicon chip is, however, reaching its (quantum-

mechanical) limits. In addition, with operating gate speeds of the order of few nanoseconds, a

limit is imposed by the distance a signal can propagate: at 9.5 nsec for the CRAY X-MY the limit

is roughly approximate to the linear dimensions of the computer. Thus, greater computer perfor-

mance can be achieved only through radical changes in computer architecture; today’s supercom-

puters are shifting from the uni-processor design to architectures with many processors that per-

- 2 -

form independent operations concurrently.

This trend in changing computer architecture presents the algorithmic designer with new

challenges. In the context of mathematical programming algorithms, there have been a number of

theoretical studies in unconstrained optimization within a parallel environment - several of these

occuring before parallel computers became widely available. See, for example, Dixonll,

L o ~ t s m a ~ ~ , Schnabel4I and their references. Parallel constrained optimization is practically unex-

plored; there have been few experiences with large scale optimization on parallel computers (for

an exception see L a ~ d o n ~ ~). This paper examines some of the general aspects of vector comput-

ing with emphasis on its impact on the field of nonlinear network programming.

Network modeling is a fertile area of mathematical programming. A wide range of real

world problems can be formulated as nonlinear networks models. Such problems include stochas-

tic networks6, hydroelectric power systems control39, steady-state equilibriuml63 7, balancing of

Social Accounting Matrices (SAh4)14, and stock portfolio selection problems33. Lasdon and

Warren2s review some of these areas and provide a bibliography. In the past, progressively larger

problems were solved by capitalizing on the underlying structure of the network prob-

l e m ~ ~ * ~ ~ * lo, l9. Nevertheless applications still exist - like the U.S. air-traffic control -

that result in problems whose size exceed the capabilities of conventional computer systems.

Supercomputers can solve a whole new range of problems that are considered by today’s stan-

dards to be ultra-large.

Several questions arise with respect to the use of supercomputers. How do we specialize

different algorithms to take advantage of the architecture of vector computers, and how do these

algorithms compare on such machines? Do our experiences with nonlinear network algorithms on

sequential machines still hold true in a vector environment? Does the relative advantage of net-

work algorithms over general purpose codes carry over onto vector machines or not? These ques-

tions will be addressed in this paper.

The remaining of the paper is organized as follows: Section 2 provides an overview of

current trends in computer design, examining those features of the supercomputer architecture

- 3 -

that are important to the applications programmer. Section 3 describes a general framework for

the vectorization of optimization software; these guidelines are applied in vectorizing two non-

linear network codes as described in Section 4. Conclusions and computational comparisons with

a general purpose code (MINOS) in a vector environment (CRAY X-MP/24 computer) are the

subject of Section 5, together with comparative testing among different computer systems. The

vectonzation framework, the streamlining of the network algorithms, and the computational

experiments on the CRAY X-MP/24 are the main contributions of this study.

- 4 -

2. Computer Architecture

Consider a network problem in three spatial coordinates over multiple time periods (e g the

U.S. air-traffic control). To achieve an increase in resolution by an order of magnitude

would require an increase in speed by a factor of 10**4. The trend in cycle times for computer

systems over the last 20 years (Figure l4) suggests that the performance of conventional

machines will improve by at most a factor of ten over the next decade. At the same time the per-

formance of parallel computers is expected to improve by a factor of 100-20044.

0.1

P e c

0.01

0.001

o.Ooo1
I960 W63 1970 1973 WOO 1903 t000 1993

YEAR
Figure 1: Trend in Cycle Time of Computer Systems ?

t Cycle Time = , where t = YEAR - 1964
5.4 t + 10

- 5 -
.

This performance will be made possible only through the use of innovative computer architec-

tures. The specifics of the computer design become therefore of primary importance for those

users who want to exploit the full potential of supercomputers.

In this section we discuss several issues in super-computer design. For more details refer to

the papers assembled by Kowalik26, the work by Warlton4, Neves3* or Hockney and Jeeshope20

and the recently published tutorial on "Supercomputers: Design and Applications"22. We

describe features of the CRAY X-MP/24 that are important from a programmer's point of view.

The choice of the CFUY X-h4P as a reference machine is based on the following considerations:

(I) CRAY computers achieve a reasonable balance between general purpose, uniprocessor (but

slow) systems, and fast, parallel (but special purpose) machines. They have been shown to

achieve relatively high performance on a wide variety of benchmark problems40.

(11) CRAY computers are the most accessible to the scientific and especially the academic com-

munity: 75% of the world's supercomputers are CRAY systems, four out of the six institu-

tions providing supercomputing services to the Academic community in the U.S. have

CRAY computers, and two out of the four planned Supercomputer Centers will be equipped

with CRAYs2. Also twenty-six out of the forty supercomputers installed in six western

European countries (as of September 1984) were CRAY machines15.

Although use of the CRAY seemed more appropriate at this point, it should be pointed out

that several other parallel systems are commercially available. It is by no means clear which sys-

tem is more suitable for a particular application. New designs are constantly appearing either as

research projects or on a commercial basis.

2.1. A Trend Analysis

It is beyond the scope of our study to provide a comprehensive analysis of the trends in

computer architecture. This is in fact one of the complications arising from parallel computing:

there exists a wide variety of architectures each one with its own distinct features that present the

programmer with different advantages or disadvantages. A broad analysis indicates that the situs-

- 6 -

tion in designing parallel computers is indeed chaotic.

Parallel computing can be visualized as a domain with two dimensions5 (see Figure 2). On

the one side we have multiple processors operating independently on the same problem, possibly

executing different jobs associated with the same problem (multi-programming), executing dif-

ferent tasks of the same algorithm (mulrirasking) or executing different portions of the same task

(micrcztasking); this is high level parallelism. The second degree of parallelism lies at the level of

vector/matrix operations of an algorithm. This is low level parallelism, conveniently called vec-

torizarion.
M U L TI TA SKIN G

I

HIGHER level para l l e l i sm
i n d e p e n d e n t ALGORITHMS
JOB,~PROGRAM orient a t i o n
MULTI-JOB per formance

LOWER level p a r a l l e l i s m
independen t OPERATIONS
STA TEMENT or i en ta t ion
SINGLE - JOB p e r f o r m a n c e

Y

SCALAR VECTORIZA TION

Figure 2: The Two Dimensions of Parallelism

The first dimension of parallelism has been realized in a number of existing computer sys-

tems, that in Flynn’s taxonomy l7 may be classified as Mulriple Znsrrucrions Multiple Dura

(MIMD) machines. (Examples: iPSC by INTEL42, HEP by DENELCOR43, NYU Ultracom-

pute? 1.

A further classification of MIMD systems is based on the number of processors available on

the system:

-7-

Small scale distributed systems < 16 processors

Medium scale distributed systems < 128 processors

Large scale distributed systems <lo24 processors

Massively distributed systems >lo24 processors

Lastly, multiple processors may be tightly coupled communicating with each other through

shared registers, shared memory, or by exchanging messages. Or they may be loosely coupled

through, for example, a local area network incurring high communication costs. See the paper by

Cotton8 for a survey of networking technologies for distributed systems.

The second category of parallel machines (vector processors) fall into Flynn’s Single

Instruction Multiple Datu (SIMD) category. (Examples: CRAY X-h4P or CRAY-2 by CRAY

 research'^^', CYBER 205 or CYBERPLUS by Control Data25, FACOM WlOO or VP200 by

F u j i t ~ u ~ ~). These machines are characterized by parallelism at the vector/matrix operations

level. In general, they have a number of dedicated functional units (for example, one for addition

and one for multiplication). High performance is achieved by executing, in a pipeline fashion,

operations on long vectors or matrices. Vectors may be fetched directly from memory (e.g.

CYBER 205)’ or may be loaded through fixed length registers (CRAY systems), or through

reconfigurable registers (FACOM). Some machines, like the CRAY, may address vectors in non-

contiguous storage, while on other machines, like the CYBER 205, this is not possible. As a

further complication, vector computers are designed with a number of processors that may

operate independently.(For example CRAY X-MP comes in versions with two or four proces-

sors).

This multitude of computer designs provides the programmer with new challenges in the

design of optimization algorithms. It is unlikely that computer architecture will stabilize to a par-

ticular configuration in the forseeable future, and a universal solution to the problem of parallel

software development is unlikely to be found. Lootsma31 identifies some of the issues arising

from the evaluation of algorithms in parallel environment, and Mulvey and Zenios 36 address the

problem of managing large software systems in the face of rapidly changing architectures.

- 8 -

We describe in Section 3 a general framework for streamlining optimization algorithms for

a vector environment. Our attention is limited to a well specified architecture - that of a CRAY

X-MP computer - which is now briefly examined. (Our framework, however, may be extended to

the case of other machines with similar organization.)

2.2. CRAY X-MP Architecture for Application Programmers

The CRAY X-h4P is a vector, register-to-register computer. This means that vectors are

loaded from memory into registers before being processed; results are stored in registers before

returning to memory.

Figure 3 is a schematic representation of the CPU architecture of a CRAY X-MP; for a

more detailed description refer to5, 279 l. The features of the architecture that are of interest to the

mathematical programmer are summarized below :

Dedicated functional units for floating point vector ADDITION, MULTIPLICATION, and

RECIPROCAL APPROXIMATION.

Dedicated functional units for integer vector ADDITION, LOGICAL, and SHIFT opera-

tions.

Dedicated functional units for integer scalar ADDITION, LOGICAL, and SHIFT opera-

tions.

Vector functional units operate in a pipeline fashion: the first result appears after a start-up

period, and remaining results appear with the rate of one every clock period.

Eight vector and eight scalar registers. Vector registers are 64 real words long each.

Four parallel paths to/from memory: two for vector LOAD, one for vector STORE, and one

for independent VO.

Four million words of memory, (32 Mbytes), organized in 32 interleaved memory banks.

Large Solid-state Storage Device (SSD) with size 32 million word (128 Mbytes) and high

block transfer rate. (Data transfer rate - 250 times faster than disk at 1000Mbytes/sec ; SSD

access times - 100 times faster than disk at 0.5ms)

I L i I
L - 0
@roc " 2 m
Q L
- P a c o n
- - 0

I

%-
E
2

m
E

d

I I -

I >-

- 10-

We proceed to describe how these special features are utilized efficiently by a Fortran pro-

gram. The CRAY Fortran Compiler (CFT) will generate machine instructions for the usage of the

vector functional units and registers. The compiler, however, will not generate vector code in

many instances. It is therefore the programmer’s responsibility to present the compiler with con-

structs that will vectorize. (This view is reinforced by the computational results of Section 4 and

in particular Table 2).

2.2.1. Vectorization of DO Loops

The primary vehicle of vectorization is the iterative procedure (i.e. inner DO loops). If a

loop is executed N times, where N = 64*K + r , the compiler will generate insmctions for a

(short) loop of length r, and then will process the additional K segments - recall that 64 is the

size, in words, of the vector registers. This strategy is possible only when operations are identical

- i.e., no branching statements are encountered during execution of the loop. Also data in the pro-

cessed vectors have to be independent - i.e., no vector element should depend on the value of

some other elements computed during execution of the loop.

The vectors are processed by the independent functional units in a pipeline fashion: the first

result will appear from the functional unit after a start-up period, conveniently called the f u n i t .

Subsequent results appear at the rate of one every cycle. In this environment we would rather pro-

cess large vectors so that the overhead of f-units is diminished.

2.2.2. Functional Unit Parallelism

The presence of multiple functional units may be exploited in two ways:

Functional Unit Overlap: functional units may operate independently of each other. For

example, while one unit is adding two vectors the multiplication unit may process two dif-

ferent vectors. The existence of multiple paths to/from memory make it possible to load the

vectors for the multiplication while storing the results of addition.

Functional Unit Chaining: the results of one functional unit may be fed directly into a

second unit. See, for example, Figure 4 which describes chaining of multiplication with

- 11-

addition during execution of the (a .X + 7) operation, called SAXPY using the BLAS nota-

tion30 (scalar a times vector E plus vector 7).

X

Y v3

7 >
d (i - 4) + Y(i- 4) d (i - S) + Y(a-5)

Figure 4: Functional Unit Chaining in the SAXPY Operation

2.2.3. Sparse Vector Operations

In most large scale optimization systems some kind of sparsity is present, and is exploited

by the software. This in general requires at least one level of indirect addressing. Indirect and

nonlinear addressing will inhibit vectorization. Hence we use a three step procedure for sparse

operations:

(1) GATHER the non-zero components of the sparse vector, according to the indirect address-

ing list.

(2) Process the gathered data in vector/pipeline mode

- 12-

(3) SCATTER the results using the indirect addressing list, to their corresponding locations.

This technique transforms a non-vectorizable code into a part that will vectorize (2), and two

parts (1,3) for which most supercomputers have readily available routines coded efficiently at the

assembly language level. (GATHER and SCATTER are implemented at the hardware level on

the CRAY X-Mp and are basic instructions for the CYBER 205). See Figure 5 for an example;

refer to the paper by Dembart9 for an extensive discussion of sparse loop operations that may be

vectorized using SCATTEWGATHER operations. Operations (l), (2) and (3) exploit functional

unit parallelism (chaining and overlap). The efficiency with which they are performed counterbal-

ances the involved overhead, especially in processing long vectors.

-
A

-
Y

GATHER the non-zero elements of
vector A (.) into vector
using index array IND(.

SCATTER the elements of vector
Y(.) into the sparse vector A (.)
using index array IND(.)

DO for all I = 1 , N

ENDDO
Y (I) = A (IND(I))

DO for all I = 1 , N

ENDDO
A (IND(I)) = Y (I)

Figure 5: The SCATTEWGATHER Operations for Sparse Vectors

- 13-

2.2.4. Memory Access

The CRAY X-MP/24 has four million words of real memory, organized in 32 interleaved

memory banks. The reason why memory is interleaved in banks is (fortunately) not of interest to

the applications programmer - refer to1. The fact however that exactly 32 banks are available is

of importance: it is possible to issue instructions to transfer words into/out of memory at the rate

of one word per clock period (cp). However there is a period - called bunk cycle - during which

the load/store is completed, and during this period the memory bank involved is busy. The

memory bank cycle for the X-MP is 4cp, and a memory bunk conflict will occur if two load/store

instructions refer to the same bank within 4cp. How can this happen? Since arrays in Fortran are

stored as a long contiguous vector, over 32 banks, every 33rd element of a vector will be in the

same bank. Hence the program should avoid referencing a vector by a stride of 32, and avoid

simultaneous operations on vectors whose location in memory is offset by 32 words. Performance

will degrade by a factor of four in the above mentioned cases. Degredation by a factor of two

will occur in addressing elements of vectors offset by 16 words, since a memory bank conflict

will occur every second instruction.

- 14-

3. A Vectorization Framework

In streamlining a software system for a parallel environment we consider vectorization at

three levels:

(1) Local Software vectorization

(2) Global Software Vectorization

(3) G l o b a l b a l algorithm vectorization.

At the first level, the program is examined at the subroutine level, and redesigned to take

advantage of the computer features. At the second level the whole implementation of the algo-

rithm is examined; data structure and application choices are redesigned to take advantage of the

machine. At the third level the choice and the design of the mathematical algorithm is recon-

sidered, in the light of machine architecture. The later level of vectorization is a challenging area

of research which is practically unexplored: current algorithms for nonlinear network program-

ming are the result of years of research and experience from different researchers and we are res-

tricted, at least temporarily, to consider vectorization of existing algorithms. Machine architec-

ture, however, should be considered as an equally important factor with the problem

structure/characteristics in the design of new algorithms. This philosophy is reflected in the inno-

vative algorithm for linear programming by KarmarkaG4. The fact that the algorithm is suited

for parallel processing is often cited as one of its advantages over the simplex method.

Local software vectorization is the first issue to be considered. While perpetuating

inefficiencies of past designs, code performance may improve by as much as an order of magni-

tude and is in general easier to pursue. Global software vectorization should be considered when

it is recognized that current design (data structure, etc.) totally inhibit vectorization at the local

level. It is in general more expensive in terms of computational and human resources, but

together with local vectorization it may result in substantial improvement in the performance of

the algorithm.

We discuss below the steps that ought to be taken in vectorizing optimization software.

- 15-

STEP-1: Use a time-analysis of the algorithm to determine the computationally intensive parts

of the program. Over 80% of the time of most application programs is spent in less

than 20% of the code. Vectorization efforts should be concentrated on this part of the

code.

Use, where possible, computational kernels that are currently available on most vector

computers, and are fine-tuned for the particular architecture.

Rearrange/modify the order of operations to make possible the use of computational

kernels.

Rearrange the order of nested DO loops. Since only inner DO loops will vectorize,

make those loops over the biggest index.

Operate on the biggest dimension of two dimensional arrays.

Unroll DO loops. This technique was originally proposed by Dongarra and Hind12;

instead of executing a loop over 1=1 to N with stride 1, use stride K and write explicit

code to account for the calculations over I,I+l, ... I+K-1. This technique eliminates the

overhead of checking for termination conditions (I> N) and also enforces chaining

and/or functional unit overlap. The depth at which unrolling is performed, Le., the

value of K, depends on the particular operations to be executed.

Within DO loops avoid statements that inhibit vectorization:

STEP-2:

STEP-3:

STEP-4:

STEP-5:

STEP-6:

STEP-7:

- IF statements

- GOT0 statements

- CALL statements

- Nonlinear vector references

- Vector dependencies

STEP-8: If Steps 2 to 7 were successful some other part of the algorithm is now the most com-

putationally intensive, and has to be reexamined; go to STEP-1 and repeat. If the

most computationally intensive part of the algorithm is vectorized, no further

- 16-

improvement can be achieved and the process may terminate. If no substantial

improvement in the performance of the algorithm was achieved in executing steps 1 to

8 proceed to STEP-9.

STEP-9: Reconsider global aspects of the algorithm that may inhibit vectorization - typically

the data structure. Are there any changes possible that will make Steps 1 through 8

effective, and if yes do the anticipated improvements justify the effort? If the answer

is yes go to STEP-1 and repeat. Otherwise we are dealing with an inherently scalar

algorithm, and the choice of algorithm or problem formulation will have to be recon-

sidered.

Conclusion : Vectorization of a program is an iterative process involving both knowledge of the

algorithm and understanding of the architectural features of the computer. Although attempts are

being made to design efficient vectorizing compilers, and array/vector extensions to the ANSI

Fortran are discussed (See Chapter 4 of "Supercomputers and Applications"22), the burden is

currently on the applications programmer for the efficient vectorization of his software.

In the next section we use this framework in the context of two nonlinear network codes: in

the one case with very encouraging results in terms of improved performance, and in the other

case with less desirable, yet illuminating conclusions.

- 17-

4. Case Studies in Nonlinear Network Programming Vectorization

In this section we describe how the vectorization framework developed earlier was applied

in the context of two codes for nonlinear network programming. A nonlinear generalized net-

work problem is defined in the form :

[NLGN] Minimize F(F)
Subject to :

-
A * x = b

1 l X l U
-

where :

F(X) : convex objective function

x

A

b

1 lU : vectors of lowerhpper bounds

NA : number of arcs in the network

NN : number of nodes in the network

-
: vector of decision variables

: generalized network constraint matrix with two non-zero entries in every column

: vector of supplies and demands
-

-

The first code (NLPNETG) is based on the primal truncated Newton algorithm, imple-

mented using an active set strategy whereby the constrained matrix is partitioned into a basic,

superbasic and non-basic part: A = [B I S IN 3. For a description of the underlying algorithm and

discussion of implementation issues refer to Ahlfeld et ai3. The second code (GNSD) is based on

the simplicial decomposition algorithm of Hohenbalken21, with inexact solutions to the master

problem. Refer to Mulvey et al. 34 for a description of the algorithm and its implementation. The

reader who is unfamiliar with developments in computational nonlinear programming will find

the book by Gill et al. l8 useful.

The computational testing was camed out on a CRAY X-MP/24 available at Boeing Com-

puter Services (BCS). This CRAY model has two independent CPUs and comes with 4MWords

of real memory - only one CPU was used by our programs due to operating restrictions by BCS.

The CRAY FORTRAN compiler CFl"1.13 was used in all cases. The test problems were

- 18-

of Reduced
Hessian

2104

collected from three areas of application and one set of randomly generated problems. See Table

of Reduced Description
Gradient value

-.3239322E5 .0045 Dallas Water

1 for a description of their characteristics.

>io4
>lo6
>io4
>lo8
>io3
>io4

PROBLEM

PTN30
PTN150
PTN660

-.48 19730E5 .0020 Distribution
-.206 1074E6 .O 160 models
-.7 129290E7 .OW3 Matrix balancing
-.4205693E7 . O W models
.lo1 1792E5 .mo Randomly gen-
.3834884E5 .0049 erated, strictly

convex networks

SMBANK
BIGBANK
GROUPl ac
GROUPl ad

MARK3 >lo2

Size
(NodeslArcs)

-.1145214E6 .OK20 Markowirz port-
folio construction

30/ 46
150/ 196
666’ 906
641 117

11 16’2230
200/ 500
400/1000

857/ 17 10

Free arcs
at optimum

15
44

240
54

946
100
119

4

Condition No. I Objective I I.. Norm

Table 1 : Test Problems

4.1. Truncated Newton Algorithm

Once the software system NLPNETG was installed on the CRAY it became evident that the

vectorizing compiler had only marginal effect on performance (average improvment in solution

time - 14%) - refer to the first two columns of Table 2. This behavior was anticipated, since

NLPNETG makes extensive use of sparse matrix handling techniques, and employs data structure

that are inherently scalar. A timing analysis of the program for a typical test problem (l’l”660)

reveals that the following parts of the program are the most computationally demanding:

1. Conjugate Gradient routines (CG)

2. FunctiodGradientfHessian evaluation (CALFGH)

3. Active set generation routine (PVCOL)

4. Basis handling routines (REVMAX)

5. Active set storage routine (STORE)

Problem

PTN150
PTN660
SMBANK
BIGBANK
STICK4
GROUP 1 ac
GROUP 1 ae

Av. ratio
*

0.86

NLPNEl

2.131
0.22

~-

Without vectorization
0.328
2.435
0.358

244.107

18.668
*
*
*

- 19-

Solution times (sec)
Compiler vectorization I User vectorization

0.317 I 0.165
2.316
0.327

225.900

17.215
*
*

1.402
0.177

58.896
2.925
4.983

49.454

problem not solved with this option

Table 2 : Vectorhation of NLPNETG on the CRAY X-MP/24

6. General purpose sorting routine (SORT)

Point A of Figure 6 indicates the percentage of CPU time spent in every one of these routines,

and the total time for solving this problem. The conjugate gradient (CG) routines are the most

computationally demanding for this code.

The CG routines implement the linear conjugate gradient algorithm for solving Newton’s

equations for the search direction on the active set:

where :

p7r , descent direction on the active set

= VF (2) , gradient vector (NA -long)

H = V2F (5) , Hessian matrix (NA x NA)

B , square nonsingular basis matrix (NN x N N)

S , rectangular matrix of active set columns (NN x NS)

NS is the number of superbasic variables in the current subspace

For a detailed description of the conjugate gradient algorithm refer to Gill et all8. The advantage

of this approach for large scale computing, however, is that it does not require explicit

25

20

w z -
U 15 w

2:
V

10

5

0

30

20

% cpu40[

-

-

- 20 -

POINT-A

30

20

POINT-A I
-

-

10
CALFCH -

PVCOL

REYUAX

cpu 30 40[

0 ' S"W ' -1

20 I

-

POINT-B

1

CG

I

6
2

7

J

2 3 4 5

;: CPV
POINT-C

7-

POINT-D

20 -

CALFCH
IO

Figure 6: Vectorization of NLPNETG

-21-

computation of the reduced Hessian (Z '*H . Z) ; instead it forms a series of products of the form

2 - V , H .V and 2 '-7, where V is a dense vector defined iteratively during execution of CG. We next

describe how the three matrix-vector products in CG were coded for maximum efficiency on the

CRAY x-MPl24.

V

Structure o f f

P ' I ! .)
Data structure represenation o f Z

Figure 7 : Vectorization of the Product 2 . V

4.1.1. Vectorization of Z.7

The matrix 2 is partitioned into three parts: an identity matrix I for the superbasic variables,

a null matrix 0 for nonbasic variables and a sparse matrix (-B-'.S) for basic variables. The pro-

ducts of 3 with I and 0 are computed in the obvious way. The product of (-B-'.S).V deserves spe-

cial attention. For convenience we refer to Z as being the matrix (-B-'.S).

We store 2 columnwise, as a sparse matrix in vector PV(.) . We use a BEGIN(.) pointer array

to indicate the starting address of every column in PV(.) . A NUM(.) array indicates the number of

- 22-

non-zero entries in the column, and a pointer IROW(.) indicates the corresponding row number of

every non-zero element - See Figure 7.

The obvious way to compute y = Z-V on a scalar computer is the following:

Step X DO for all I = 1, NA
Y (I)= 0.0

ENDDO

Step Y DO for all J = 1, NS
JBEG = BEGIN (J)
JEND = JBEG + NUM (J) - 1
VJ =v(J)
DO for all K = JBEG, JEND

ENDDO
Y (IROW (K)) = Y (IROW (K)) + VJ * PV (K)

ENDDO
On a vector machine some modifications are necessary - though for this example the operations

performed do not change. The first DO loop (Step X) is unrolled to a depth of four, and efficient

vector instructions are generated by the compiler:

Step XV DO for all I = 1, NA, 4
Y (I)=O.O
Y (I+l)= 0.0
Y (I+2)= 0.0
Y (I+3)= 0.0

ENDDO
The inner DO loop of Step Y is a sparse SAXPY operation30. It is treated in the following

fashion:

Step YV DO for all J = 1, NS
JBEG = BEGIN (J)

VJ =v(J)
DO for all K = JBEG, JEND

ENDDO
SCATTER Y’(IR0W (K)) 3 Y”
DO for all I = 1, NA

ENDDO

JEND = JBEG + NUM (J) - 1

Y’ (K)= VJ * PV (K)

Y (I)=Y(I)+Y’(I)

ENDDO
The SAXPY operation is a part of BCS/VectorPack library, coded in CRAY assembly language

(CAL) for maximum efficiency, so the vectorized code is actually written as:

- 23 -

Step YV DO for all J = 1, NS
JBEG = BEGIN (J)
NUME = NUM (J)
VJ =v(J)
call SAXPY (Y, IROW(JBEG), VJ, PV(JBEG), NUME)
ENDDO

ENDDO
The improvement in the efficiency of NLPNETG following these modifications is depicted by

Point B of Figure 6.

4.1.2. Vectorization of H.7

The Hessian matrix H is symmetric, and is stored using a modification of the Yale sparse

matrix storage scheme. The nonzero entries of the matrix are stored row-wise in vector H (.) . A

pointer array I H (.) points to the starting address of every row in H (.) , and pointer J H (.) indicates

the corresponding column of all nonzero elements. Diagonal elements are stored even if the

numerical value is zero. The obvious way to compute = H.F on a scalar machine is the follow-

ing:

Step X DO for all I = 1, NA
Y (I) = 0.0

ENDDO

Step Y DO for all I = 1, NA
SUM = 0.0
IBEG = IH (I)
IEND = IH (I+1) - 1
DO for all J = IBEG, IEND

POINT = JH (J)
SUM = SUM + v(POINT) * H(J)
Y(P0INT) = Y(PO1NT) + v(I) * H(J)

ENDDO
Y(I) = Y(I) + SUM

ENDDO

Although Step X will vectorize efficiently on the CRAY, the indirect addressing of the

inner DO loop in Step Y inhibits vectorization. The vectorization of H-F requires the execution

of operations in different order than in a scalar code, in order to make use of the BCS/VectorPack

routine SAXPY and SDOT - inner product of a sparse vector with a dense vector :

~

- 24-

Step WV GATHER Y’ t H(IH)

Step XV DO for all I = 1, NA, 4
Y (I) = Y‘ (I) * v(1)
Y (I+l) = Y’ (I+l) * v(I+l)
Y (I+2) = Y’ (I+2) * v(I+2)
Y (I+3) = Y’ (I+3) * v(I+3)

ENDDO

Step YV DO for all I = 1, NA such that (IH(I+l)-IH(I)-1) not equal 0
NUM = IH(I+l)-IH(I)-1
IPOINT = IHO + 1
Y 0 = Y(I) + SDOT (H(IPOINT), IH(IPOINT), NUM, V)
call SAXPY (Y, JH(IPOINT), v(I), NUM)

ENDDO

The improved performance of NLPNETG following these modifications of H T is depicted by

POINT D in Figure 6. A few irregularities - as seen by a Fortran programmer on a sequential

machine - require some explanation :

In Step WV the diagonal components of H are GATHERed in a temporary array y *, so as to

initialize the vector to the values of diag (H T) in an efficient way.

- Off-diagonal components of H , for those rows where such elements do exist, contribute to

the product H T twice: once due to their presence in the upper triangular matrix, and once

due to the presence of a symmetric element below the diagonal. This contribution is com-

puted twice: once in the SAXPY statement and once in the SDOT statement. While the

number of operations performed by this code is optimum, the calculations are per-

formed in an efficient vector/pipeline mode.

The DO loop in Step YV is defined over values for which off diagonal elements are present,

thus avoiding the overhead for calling the Vectorpack routines with zero components. On a

scalar machine no significant difference is detected between executing a loop zero times, or

having an IF/GOTO statement skip the loop altogether. POINT C (as opposed to POINT D)

of Figure 6 indicates the degredation in performance that may occur by following the same

programming practice on the CRAY.

In implementing the above changes of NLPNETG care was taken to avoid memory bank

- 25 -

conflicts, merely by dimensioning the arrays by non-multiples of 32. Solving a sample problem

(GROUPlad), with intentional bank conflicts gives the following results:

Without bank conflicts: solution time 87.5 sec

With bank conflicts : solution time 102.8 sec

We observe a substantial degredation in performance as a result of inadequate knowledge of the

computer characteristics.

4.2. Simplicial Decomposition Algorithm

The second candidate for vectorization was code GNSD, based on the simplicial decompo-

sition a lg0r i thrn~~9~~. This code challenges the vector machine architecture in two domains:

(I) Performing operations on sparse vector/matrices that are stored in space economizing form.

(11) Performing matrix operations on graph data structures.

While sparse vector operations can be handled using a GATHEWSCATTER approach, much in

the same way as with NLPNETG, only marginal improvement was achieved. This behavior was

anticipated since almost 90% of the time in GNSD is spent solving the linear generalized network

subproblem, with operations performed on graph data structure. This part of the algorithm is

inherently scalar, and in the absence of alternative algorithms or data structures we concentrate

on vectorizing the master problem. This involves the repeated solution of the Newton equations:

(D "H .D).p = -D "VF (D *W)

where :

Y = (j71,72,...,jin) is the matrix whose columns are the extreme points (vertices)

W = (wI,w2, ..., w,,) are associated weights for the vertices

D = ~l-r,,...,~,-l-~,, is the derived linear basis representing the active simplex

Note that D is not computed explicitly, but instead the upper triangular of the symmetric matrix

C = D '*H *D is computed in the form:

C = Y '*H .Y - Y 'OH .Y, - Y, '*H*Y + Y, '*H *Y,

X

X

II

I X

*

- 27 -

where Y,, is a conformable matrix, with its columns equal to r7, . These products were stream-

lined for the CRAY X-h4P using the same techniques employed in the vectorization of

NLPNETG.

Our local software efforts had only marginal improvement (2%) on the compiler vectorized

code, which in turn was only marginally faster than the scalar performance (5%) -- see the first

three columns of Table 3. Repeated applications of Steps 1-8 of our vectorization framework,

indicated that some global aspects of the implementation had to be reconsidered. In particular, it

became evident that the data structure for storing the vertices was inhibiting efficient vectoriza-

tion of the master problem.

Sparse storage d a t a s t r u c t u r e
o f a c t i v e v e r t i c e s f o r
s c a l a r process ing .

Dense storage d a t a s t r u c t u r e
o f a c t i v e v e r t i c e s for
vector processing.

WKt""
POINT I .

w (. I

B (. ; . 1

Figure 9: Active Vertices Storage for Simplicial Decomposition

The vertices of the active simplex are represented by NA-long vectors, stored in matrix Y.

To avoid rearranging the matrix every time a new vertex was added or an active vertex dropped,

-28-

% CHANGQo-
IN C P U TIME

15

10

5 -

0 -

-5

-10

-15

-20

-25

-30

we implemented a pointer scheme, indicating the active vertices in Y and their corresponding

weights - see Figure 9. This pointer was used in indirect addressing during computation of C, and

an alternative (also simpler) scheme was used, where the active venices were ordered in the first

n columns of Y, and the weights were stored in the same order. This strategy removed the prob-

lem of indirect addressing, but additional work is needed to keep the columns of Y in the right

order, every time a vertex is dropped. The results of this change in data structure on the CRAY

and a VAX 11/750 are shown in Figure 10.

VAX 11/750
-

-

A - &

P T N 3 0 P T N 150 P T N 6 6 0 GRP 1AC G R P 1AD STICK4
-

-

-

-
CRAY X-MP

-

I 1 I I I I I

Figure 10: Performance of Vectorized GNSD on a CRAY X-MP/24 and a VAX 11/750

On the CRAY the data rearrangement is executed in vector mode, and the presence of multiple

paths to/from memory makes this operation very efficient. Little overhead is introduced in rear-

ranging Y. The resulting code has improved efficiency; as much as 25% for some problems with

average improvement 13%. On the sequential machine (VAX), however, little is gained by

removing one level of addressing from the master problem procedures. The overhead of rearrang-

ing Y is high; the vectorized code is less efficient - as much as 20%.

Further vectorization of GNSD, with the modified data structure resulted in the improved

- 29-

1'

performance as summarized by the results of Table 3 (column 4). For some of the larger test

problems as much as 99% of the total execution time is spent in the subproblem; no further

improvement is possible in this environment since the cumnt implementation of the primal sim-

plex algorithm for generalized networks is inherently scalar. Using an alternative linear program-

ming algorithm (e.g. Karmarkap) might improve the related performance of the SD method.

An obvious change to GNSD would involve restructuring internal tactics, so that more emphasis

is placed on the master problem. However extensive computational testing with GNSD elsewhere

(see Mulvey et al. 34) does not provide any evidence that we could reduce the number of sub-

problems by solving the master problems to higher accuracy. It seems that substantial savings in

vectorizing GNSD can be achieved only with some radical modifications of the underlying algo-

Vectorization . vectdrization
FJTN~O 0.206 0.191

rithm.

PTN15O
F''I"660
STICK4
GROUP 1 ac

I1 I GNSD Solution times (sed I

1.289 1.173
9.046 8.553

3.825 3.357
27.080 *

1 1 Problem I Without I Compiler

GROUP 1 ad 8.1 15 *
-Av. ratio 1 .oo 0.95

1 ,

Local Software
Vectorization

0.186
1.146
8.422

25.100
3.218
8.007
0.93

Table 3 : Vectorization of GNSD on the CRAY X-MPi24

Global Software
Vectorization

0.999
7.725

23.623
2.884
7.728

-30-

5. Discussion and Conclusions

Two conclusions are immediate from the work described in this paper:

The increased complexity of computer systems adds to the user the burden of specializing

his algorithms. It is insufficient to concentrate research efforts solely on designing algo-

rithms that capitalize on the problem’s intrinsic characteristics. We now must concern our-

selves with the underlying computer architecture.

Different algorithms exhibit various degrees of parallelism. The developed vectorization

framework, when applied in the context of a truncated Newton algorithm, resulted in sub-

stantial improvement in performance - as much as 80%. The same framework, when applied

on a simplicial decomposition algorithm, resulted in very modest improvement in efficiency

- at most 15%. Not only must we concern ourselves about which algorithm is suitable for

some class of problems, but also which algorithm is more appropriate for a given computer

architecture.

In an effort to extend our previous work in comparing the network specialized algorithms

with a general purpose code, we solved three characteristic problems with NLPNETG and

MINOS36 both on the CRAY and a VAX 11/750. The relative performance of the two algorithms

- as shown in Figure 11 - indicates that network algorithms vectorize at least as well as general

purpose codes. It seems unlikely therefore that specialized NLGN algorithms will become

obsolete, given their high performance ratio to general purpose codes, even on vector computers.

Finally, an attempt was made to establish the size of the problems that can be solved on dif-

ferent computer systems. Table 5 summarizes the results of our testing on three diverse machines:

(1) VAX 11/750 minicomputer, (2) IBM 3081 large mainframe and (3) the CRAY X-hW24. We

point out two facts that are obvious from this exercise:

(1) Ultra-large NLGN can be solved on a routine basis on vector supercomputers, when

sufficient care is taken to streamline the algorithms for the machine architecture.

(2) The average ratio of 17 between the performance of NLPNETG on the IBM 3081 and the

- 31 -

40

30

20

10

0 1 2 3 4
PTN30 PTN 150 PTN660

Figure 11: Performace ratio of MINOS / NLPNETG on CRAY X-MP and VAX 11/750

CRAY, can serve as the basis for a rudimentary comparison of nonlinear network optimiza-

tion with other ares of large scale computations : Dongana13 reports an average ratio 13-22,

for the solution of large systems of linear, dense equations and S ~ h n e d e l ~ ~ reports a ratio of

13 for seven benchmark programs for the solutions of partial differential equations. Net-

work algorithms are obviously on the frontier of vectorizable codes.

Parallel computing opens several new areis of research for network programmers. We

expect to see novel large scale applications of nonlinear network modeling. A new research topic

is the development of specialized vector techniques for handling graph data structure, thus

improving the performance of linear network algorithms, and with an impact on other areas of

sparse matrix computations. Exploitation of the multiple processors available on the CRAY X-

Problem

P'I"150

NLPNETG Solution times (se
IBM3081 I VAX 11/750 (Unix)

1.98 23.86
297.93
21.50

9100.00
1652.00

10227.00
204.43

FTN660
SMBANK
BIGBANK
GROUPlac
GROUPlad
MARK3
Average

~- . -
3075.25 (1 84)

22.85
2.64

376.74
218.46

1320.82
24.87

281.19 (17)

I
CRAY/XMP

0.165
1.402
0.177

58.896
4.983

49.454
2.131

16.744 (1)

Table 5 : Testing NLPNETG on different computer systems

MW24 is another area where further work is needed. The commercial availability of massively

distributed systems presents another dimension to the problem of parallel algorithmic develop-

ment.

Acknowledgment

Part of the computational work was completed while the first author was attending the Supercomputing Summer Institute sponsored by

NSF and DOD, and organized by Boeing Computer Services at the University of Washington, Seattle in August 1985. The invitation

of BCS to attend the Institute is acknowledged, together with helpful discussions with Mr Mike Healy and Dr Horst Simon.

- 33 -

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

References

tion,” NOC Technical Report 125, Hatfield, U.K., 1982.

Cray-I Computer System, FORTRAN (CFT) Training Volume, CRAY Research Inc., 1982.

“Access to Supercomputers,” OMB 3145-0058, National Science Foundation, Washington,

D.C., August 1985.

D. P. Ahlfeld,. R. S. Dembo, J. M. Mulvey, and S. A. Zenios, “Nonlinear Programming on

Generalized Networks,” Report EES-85-7, submitted for publication to Transactions on

Mathematical Software, Princeton University, June 1985.

B.L. Buzbee and D.H. Sharp, “Perspectives on Supercomputing,” Science, vol. 227, no.

4687, pp. 591-597, February 1985.

S.S. Chen, “Large-Scale and High-speed Multiprodssor System for Scientific Applica-

tions,” in High Speed Computation, NATO AS1 Series F, vol. 7, Springer-Verlang, Ger-

many, 1984.

L. Cooper and L.J. LeBlanc, “Stochastic Transportation Problems and Other Network

Related Convex Problems,” Naval Research Logistics QuarterZy , 1977.

L. Cooper and J. Kennington, “Steady State Analysis of Nonlinear Resistive Electrical Net-

works Using Optimization Techniques,” Technical Report IEOR 77-12, Southern Metho-

dist University, 1977.

I.W. Cotton, “Technologies for Local Area Computer Networks,” Computer Networks,

vol. 4, pp. 197-208, North-Holland, 1980.

B. Dembart, “Vectorization using GATHER and SCATTER,” ETA-TR-26, Mathematics

and Modeling Technical Report, Boeing Computer Services, Seattle, April 1985.

R. S. Dembo and J. G. Klincewicz, “A Scaled Reduced Gradient Algorithm for Network

Flow Problems with Convex Separable Costs,” MarhematicaZ Programming Studies, vol.

15, pp. 125-147, 1981.

L.C.W. Dixon and K.D. Patel, “The Place of Parallel Computing Numercial Optimiza-

- 34-

12. J.J. Dongarra and A.R. Hinds, “Unrolling Loops in FORTRAN,’’ Sofmare - Practice and

Experience , vol. 9, pp. 219-226, 1979.

13. J.J. Dongarra, “Performance of Various Computers Using Standard Linear Equations

Software in a Fortran Environment,” Technical Memorandum No.23, Argonne National

Laboratory, Illinois, April 1985.

A. Drud, S.A. Zenios, and J.M. Mulvey, “Blancing Some Large Social Accounting

Matrices with Nonlinear Network Programming,’ ’ in preparation, Development Research

Department, The World Bank, Wahington, D.C., January, 1986.

I.S. Duff, “The Used of Supercomputers in Europe,” CSS-161, Computer Science and Sys-

tems Division, AERE Harwell, Oxfordshire, September 1984.

M. Florian and S. Nguyen, “A Method for Computing Network Equilibrium with Elastic

Demands,” Transportation Science, vol. 8, pp. 321-332, 1974.

17. M. J. HYM, “Some Computer Organizations and their Effectiveness,” ZEEE Transactions

on Computers, vol. C-21, no. 9, pp. 948-960,1972.

14.

15.

16.

18. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London,

1981.

19. R. V. Helgason and J. L. Kennington, “An Efficient Specialization of the Convex Simplex

Method for Nonlinear Network Flow Problems,’’ Technical Report, IEOR 77017, Southern

Methodist University, 1978.

20. R. Hockney and C. Jeeshope, Parallel Computers, Adam Hilger Ltd., Bristol, England,

1981.

21. B. von Hohenbalken, “Simplicial Decomposition in Nonlinear Programming Algorithms,”

Mathematical Programming, vol. 13, pp. 49-68, 1977.

22. K. Hwang, Supercomputers: Design and Applications, IEEE Computer Society, Maryland,

1984.

- 35 -

23. M.H. Kalos, “The NYU Ultracomputer,” Ultracomputer Note 48, Courant Institute of

Mathematical Sciences, New York University, N. York, April 1983.

24. N. Karmarkar, ‘‘A New Polynomial Algorithm for Linear Programming,” Combinatorica,

V O ~ . 4, pp, 373-395, 1984.

25. M.J. Kascic, Jr., “A Performance Survey of the CYBER 205,” in High Speed Computation,

NATO AS1 Series F, vol. 7, Springer-Verlang, Germany, 1984.

26. J. S. Kowalik, High Speed Computations, NATO AS1 Series, Computer and System Sci-

ences, 7, Springler-Verlang, 1984.

J.L. Larson, “Multitasking on the CRAY X-Mp/2 Multiprocessor,” Computer, July 1984.

L.S. Lasdon and A.D. Warren, “A Survey of Nonlinear Programming Applications,”

Operations Research, vol. 28, pp. 34-50, 1980.

27.

28.

29. L.S. Lasdon, “Adaptation of Optimal Acoustic Antenna Array Design Code to the CRAY

1-M,” (manuscript), 1985.

C.L. Lawson, R.J. Hanson, D.R. Kincaid, and F.T. Krogh, “Basic Linear Algebra Subpro-

grams (BLAS) for Fortran Usage,” ACM Transactions on Mathematical Software, vol. 5 ,

30.

pp. 308-323, 1979.

3 1. F.A. Lootsma, “Parallel Unconstrained Optimization Methods,” Report 84-30, Department

of Mathematics and Informatics, Delft University of Technology, Netherlands, 1984.

32. K. Miura and K. Uchida, “FACOM Vector Processor VP-lOO/VP-200,” in High Speed

Computation, NATO AS1 Series F, vol. 7, Springer-Verlang, Germany, 1984.

33. J. M. Mulvey, “Nonlinear Network Models in Finance,” Advances in Mathematical Pro-

gramming and Financial Planning, JAI Press, 1985.

34. J. M. Mulvey, S. A. Zenios, and D. P. Ahlfeld, “Simplicial Decomposition for Convex

Generalized Networks,” Report EES-85-8, Princeton University, 1985.

J. M. Mulvey and S. A. Zenios, “Integrated RisWCost Planning Models for the U.S. Air

Traffic System,” Report EES-85-9, Princeton University, June 1985.

35.

- 36-

36. J.M. Mulvey and S.A. Zenios, “Managing Software Systems in a Rapidly Changing

Hardware Environment,” Report EES-86-2,, Princeton University, 1986.

37. B. A. Murtagh and M. A. Saunders, “MINOS User’s Guide,” Report SOL 77-9, Depart-

ment of Operations Research, Stanford University, California, 1977.

K. W. Neves, “Impact of Changing Architecture,” Report ETA-TR-28 , Engineering Tech-

nology Applications, Boeing Computer Services, Seattle, 1895.

38.

39. R. E. Rosenthal, “A Nonlinear Network Flow Algorithm for Maximization of Benefits in a

Hydroelectric Power System,” Operations Research, vol. 29, pp. 763-786, 198 1.

40. U. Schendel, Introduction to Numerical Methods for Parallel Computers, Ellis Horwood,

Chichester, U.K., 1984.

41. R.B. Schnabel, Parallel Computing in Optimization, NATO AS1 on Computational

Mathematical Programming, F.R. Germany ,1984.

42. C.L. Seitz, “The Cosmic Cube,” Communications of the ACM, vol. 28, no. 1, pp. 22-33,

January 1985.

43. B.J. Smith, “Architecture and Applications of the HEP Multiprocessor Computer System,”

Real Time Signal Processing N, Proceedings of SPIE, pp. 241-248, The International

Society of Optical Engineering, 198 1.

44. J. Warlton, “Supercomputers: Past - Present - Future,” in Proceedings of the BCS Super-

computer Summer Institute, University of Washington, Seattle, Aug., 1985.

